Active Label Acquisition with Personalized Incentives in Assortment Optimization

Mo Liu

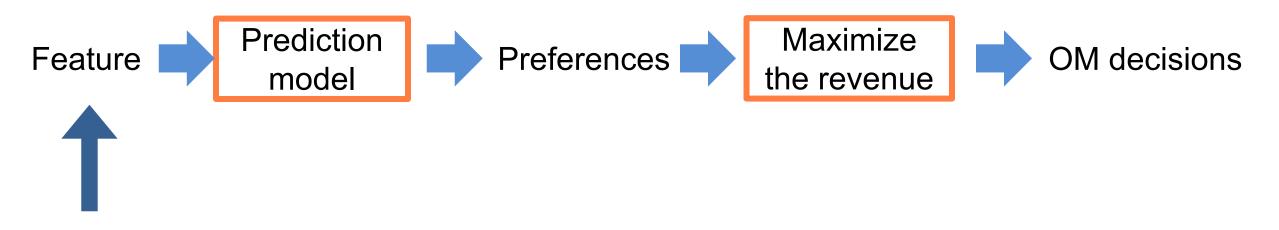
IEOR, University of California, Berkeley 2023 INFORMS Annual Meeting Joint work with Prof. Junyu Cao and Prof. Zuo-Jun Max Shen

> Active Label Acquisition in Customer Survey

- Regret of the Prediction Model
- Value of Information
- Upper bound for the value of information
- Guarantees for Assortment Optimization
- Numerical Experiments

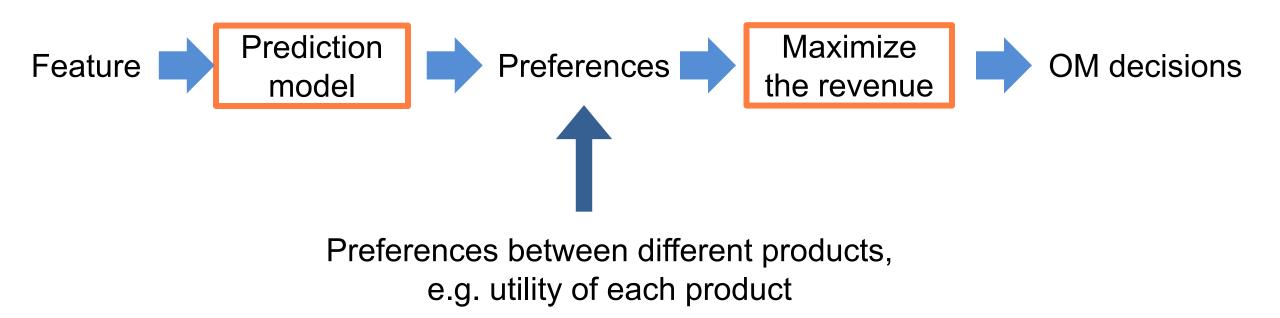
For each customer:

For each customer:



Personalized information of customers

For each customer:



For each customer:



Assortment problem, product selection...

For each customer:

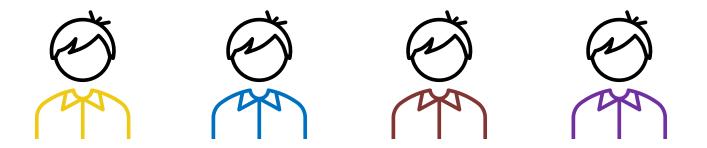
How to build a prediction model?

For each customer:

Training set: (feature, preferences) Preferences: label of the customer

How to obtain the true preferences of customers

- Survey customers:
 - Provide a comprehensive survey to customers
 - The response from one customer can reveal the true utility vector (with noise)

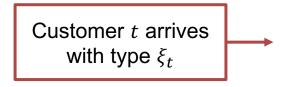


- "Without costly incentives, most consumers rarely provide this valuable feedback"

---- by Maytal Saar-Tsechansky et al. (2009)

Incentives in active label acquisition

• Active label acquisition with personalized incentives:

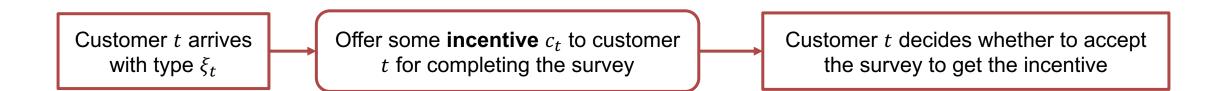


Incentives in active label acquisition

• Active label acquisition with personalized incentives:

Incentives in active label acquisition

• Active label acquisition with personalized incentives:



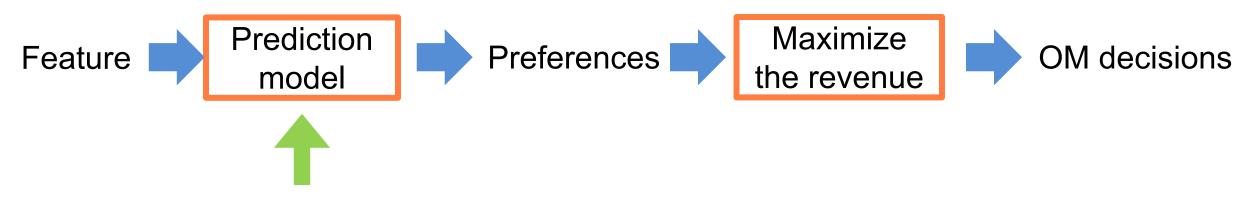
- Probability of accepting the survey p(c) depends on our offered incentives
 ➤ More incentives we offer → Larger probability of taking the survey
- Can we provide same incentives to all customers?

Provide more incentives to representative customers

Compared to the fixed incentive policy, personalized incentives can:

- \checkmark Reduce the size of the training set
- ✓ Reduce the label cost (cumulative incentives)

How to decide personalized incentives?

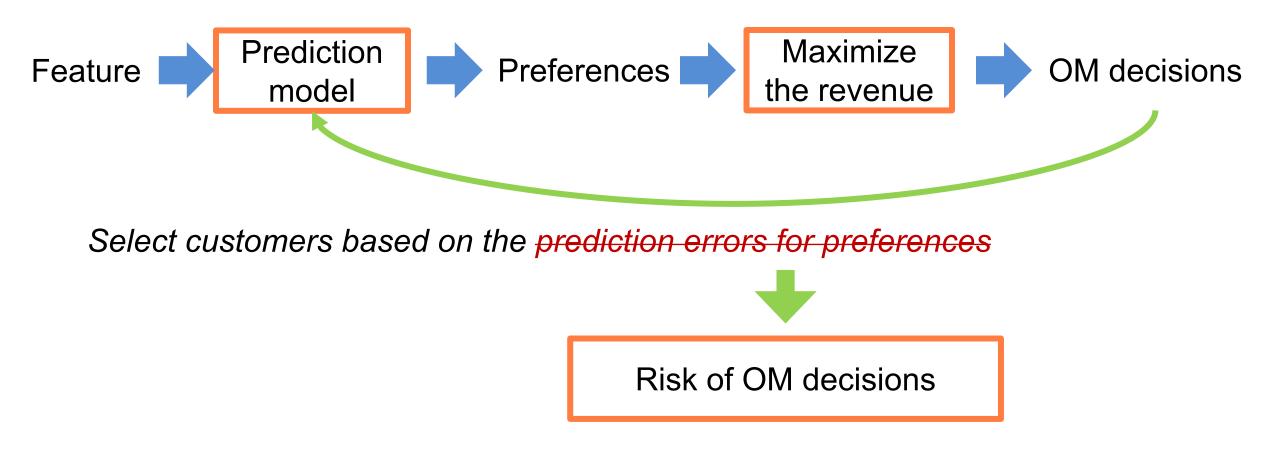


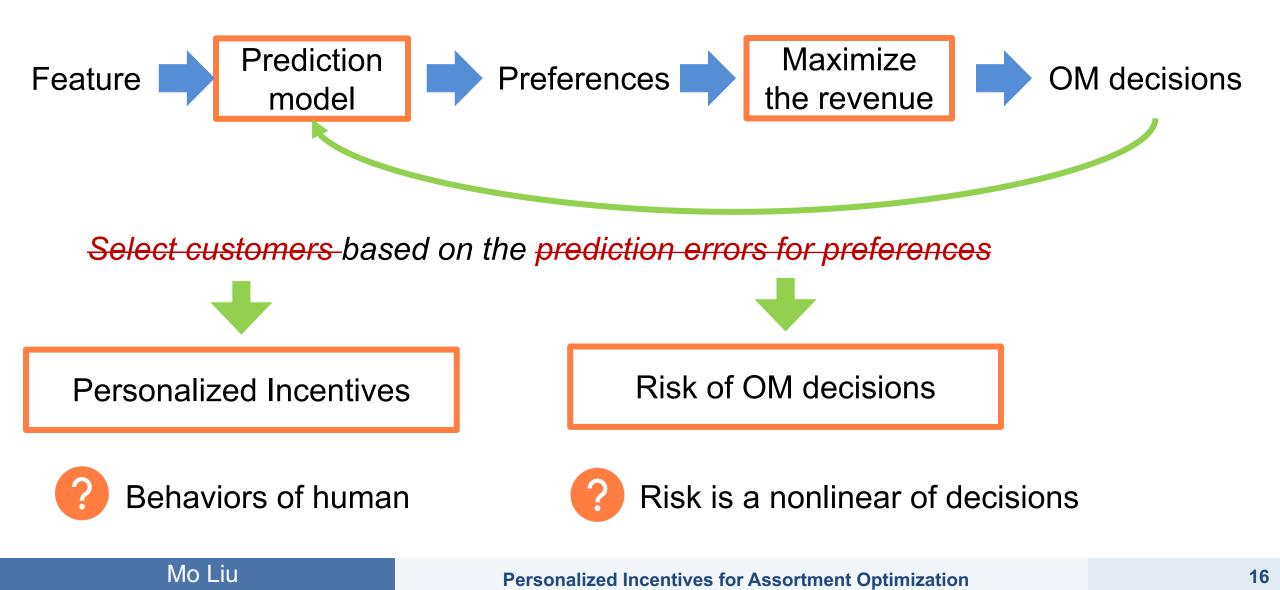
Select customers based on the prediction errors for preferences

Reasons:

If the prediction error is small enough to determine the true optimal decisions, then a smaller prediction error will lead to the same decision and obtain the same revenue

Mo Liu





Agenda

Active Label Acquisition in Customer Survey

Regret of the Prediction Model

- Value of Information
- Upper bound for the value of information
- Guarantees for Assortment Optimization
- Numerical Experiments

Regret of prediction

In the predict-then-optimize problems:

- Regret of the prediction:
 - Highest possible revenue the actual revenue of our decisions based on current prediction

□ Assortment optimization problem:

➢ Revenue of the best assortment − actual revenue of our assortment

Regret of the prediction model

- Type of customer: $\xi \in \{1, ..., m\}$
- Utility vector: $y \in \mathbb{R}^d$
- Decision vector: $w \in \{0,1\}^d$
- Revenue function: $g(w, \mathbb{E}[y|\xi])$

- $w^*(y)$: Best decision given the prediction. $w^*(y) = \arg \max_{w} g(w, y)$

Regret of prediction
$$\hat{y}$$
:
 $\ell(\hat{y}, \mathbb{E}[y|\xi]) := g(w^*(\mathbb{E}[y|\xi]), \mathbb{E}[y|\xi]) - g(w^*(\hat{y}), \mathbb{E}[y|\xi])$ Highest revenueActual revenue

• Given a predictor *h*, the expected regret of the predictor: $\operatorname{Regret}(h) = \mathbb{E}[\ell(h(\xi), \mathbb{E}[y|\xi])]$

Mo Liu

Personalized Incentives for Assortment Optimization

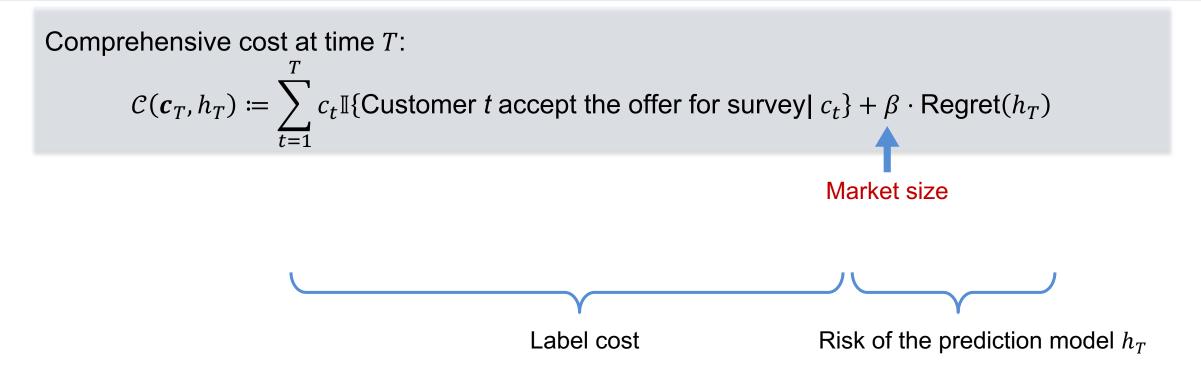
Agenda

- Active Label Acquisition in Customer Survey
- Regret of the Prediction Model

Value of Information

- Upper bound for the value of information
- Guarantees for Assortment Optimization
- Numerical Experiments

Tradeoff during the survey process

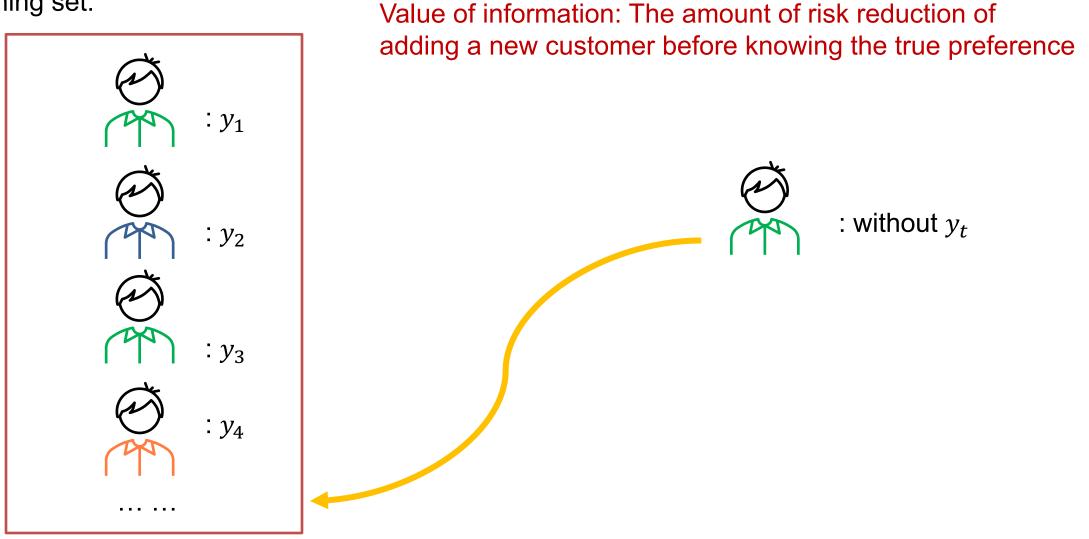


Objective: Minimize the expectation of the comprehensive cost **Tradeoff** of incentive c_t :

- Too small: Little probability of taking the survey \rightarrow Lack of data \rightarrow Regret(h_T) will be large
- Too large: Waste of label cost (incentive)

Value of information

• Training set:

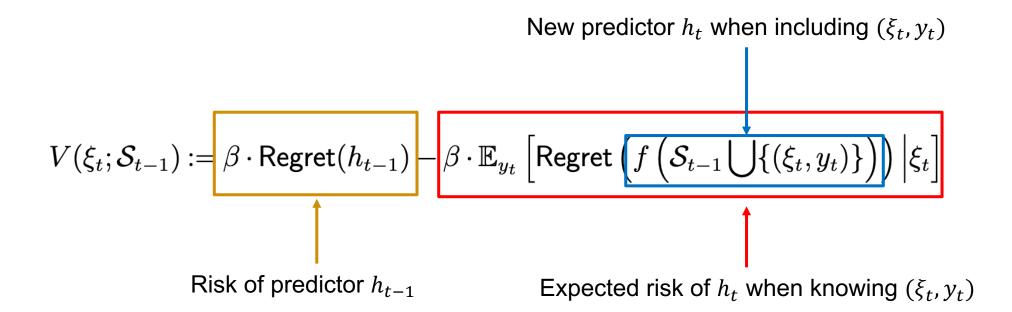


Mo Liu

Personalized Incentives for Assortment Optimization

Value of information

Value of information $V(\xi_t; S_{t-1})$



It quantifies the expected risk reduction of including the customer t in the training set before knowing y_t

Mo Liu

Agenda

- Active Label Acquisition in Customer Survey
- Regret of the Prediction Model
- Value of Information

> Upper bound for the value of information

- Guarantees for Assortment Optimization
- Numerical Experiments

Assortment Problem

- Customers have the no-purchase option 0.
- Suppose y_i follows Gumbel distribution with variance σ
- By MNL choice model, the purchase probability for product *i* is:

$$\frac{e^{\overline{y_i}/\sigma}}{1+\sum_j e^{\overline{y_j}/\sigma}}$$

- Suppose the price of product i is p_i
- Maximize the revenue of the assortment:

$$\max_{w \in \mathbb{B}^{d}, u \in \mathbb{R}^{d}} \frac{\sum_{i \in [d]} u_{i} p_{i} w_{i}}{1 + u^{T} w}$$

s.t. $w^{T} \mathbf{1} = z,$
 $u_{i} = e^{\overline{y_{i}}^{i} / \sigma}, \quad \forall i \in [d]$

Mo Liu

Personalized Incentives for Assortment Optimization

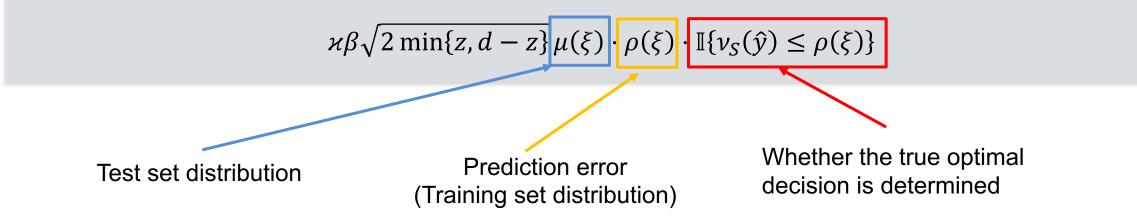
Incentives: upper bound for the value of information

Distance to degeneracy:

$$\psi_{S}(\hat{y}) \coloneqq \inf_{w^{*}(y) \neq w^{*}(\hat{y})} \{ \|\hat{y} - y\| \}$$

 It is defined as the distance between the prediction ŷ and the closest vector y that leads to a different decision

Suppose the prediction error for \hat{y} is $\rho(\xi)$, then an upper bound for the value of information is:



Insights from the upper bound of value of information

Upper bound

$$\varkappa \beta \sqrt{2 \min\{z, d-z\}} \mu(\xi) \cdot \rho(\xi) \cdot \mathbb{I}\{\nu_{S}(\hat{y}) \le \rho(\xi)\}$$

- If one feature has a higher probability in the test set
 Its value of information gets larger
- 2. If one feature has a larger proportion in the training set
 - The prediction error for this feature gets smaller
 - The value of information gets smaller
- 3. If the prediction error for one sample is smaller than $v_S(\hat{y})$:
 - > The optimal decision for this sample has been determined
 - Regret for this type of customer is zero
 - > We will stop surveying this type of customers

Personalized incentives based on the upper bound of value of information

```
Range of offered incentive: c_t \in \{0\} \cup [c_{min}, c_{max}]
```

Given a type of customer ξ :

If the upper bound of value of information $\leq c_{min}$:

- Provide zero incentive
- Ignore the feedback of this customer

Otherwise, we offer some incentives between $[c_{min}, c_{max}]$

Agenda

- Active Label Acquisition in Customer Survey
- Regret of the Prediction Model
- Value of Information
- Upper bound for the value of information

Guarantees for Assortment Optimization

Numerical Experiments

Near-degeneracy function

Near-degeneracy function Ψ :

$\Psi(\rho) := \mathbb{P}(\nu_S(\mathbb{E}[y|\xi]) \le \rho)$

 Ψ describes the difficulty in distinguishing the optimal decision from the sub-optimal decision at a certain prediction error level ρ

Guarantees for the problem

Theorem:

After *T* iterations, the cumulative label cost is at most min $\left\{ \tilde{O}\left(\sum_{t=1}^{T} \Psi(t^{-\frac{1}{2}})\right), \tilde{O}\left(T^{\frac{1}{2}}\right) \right\}$

• Low-noise condition: For some large $\rho_0 > 0$ and $\kappa > 0$, the near-degeneracy function satisfies:

$$\Psi(\rho) \le \left(\frac{\rho}{\rho_0}\right)^{\kappa}$$

Low-noise condition is closely related to Hu et al. 2022 and Tsybakov's noise condition

Under low-noise conditions:

✓ The cumulative label cost is at most $\tilde{O}(T^{1-\kappa/2})$

Mo Liu

Comparison with supervised learning

Under the low-noise condition with $\kappa > 2$:

- Personalized incentives policy requires use finite samples to achieve zero risk
- Fixed incentive policy requires infinite samples to achieve zero risk

Theorem:

Under various conditions of c_{min} , regarding the comprehensive cost:

 \checkmark Our personalized incentive policy \leq fixed incentive policy

Agenda

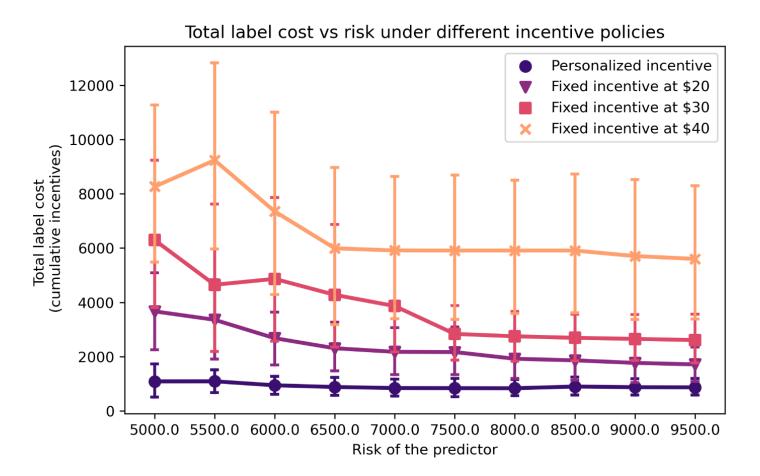
- Active Label Acquisition in Customer Survey
- Regret of the Prediction Model
- Value of Information
- Upper bound for the value of information
- Guarantees for Assortment Optimization
- Numerical Experiments

Use synthetic data:

- Number of product: 10
- Number of types of customers: 5
- Dimension of features within each type: 8
- Each type has its own feature and prediction model
- Within each type, we assume the true prediction model is linear
- The offered incentive is either 0 or some value between [\$20, \$40]
- p(c) is a linear function between (\$20, 0.3) and (\$40, 0.9)

Results: Assortment optimization

 Observation: To achieve the same level of risk, the personalized incentive policy requires much less label cost



Personalized Incentives for Assortment Optimization

Results: Assortment optimization

• When ensuring the excess risk is less than 5000:

	Personalized incentive	Fixed incentive at \$20	Fixed incentive at \$30	Fixed incentive at \$40
Required label cost	1088	3668 <mark>(-70%)</mark>	6295 <mark>(-79%)</mark>	8262 <mark>(-87%)</mark>
Required number of surveyed customers (Size of training set)	30	184 <mark>(-84%)</mark>	210 <mark>(-86%)</mark>	206 <mark>(-85%)</mark>

Thank you

Mo Liu

Personalized incentive given the value of information

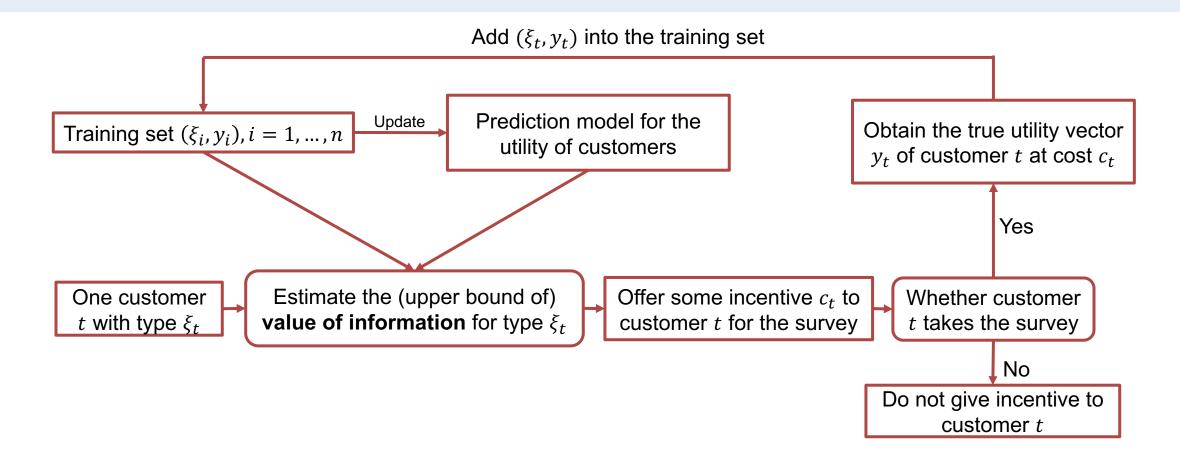
Range of offered incentive: $c_t \in \{0\} \cup [c_{min}, c_{max}]$

- If the offered incentive is zero, we ignore the feedback of this customer
- If the offered incentive is nonzero, the optimal incentive is c^*

$$c^*(V(\xi_t; S_{t-1}), p) \coloneqq \arg\min_{c \in [c_{min}, c_{max}]} \{p(c_t)[c_t - V(\xi_t; S_{t-1})]\}$$

Assumption of p(c): Increasing function with $p(c_{min}) > 0$

Active label acquisition using value of information

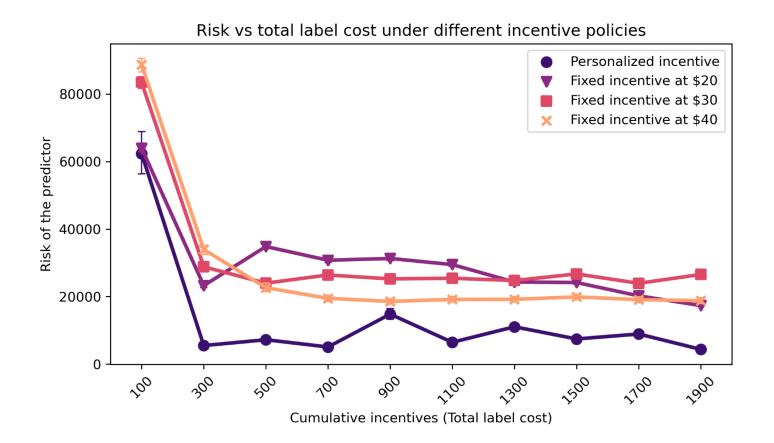


If the upper bound is less than c_{min} , we do not offer any incentive

Mo Liu

Results: Assortment optimization

• Observation: Using the same amount of label cost, the personalized incentive policy achieves much smaller risk.



Personalized Incentives for Assortment Optimization