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Agenda

ØActive Label Acquisition in Customer Survey

• Regret of the Prediction Model

• Value of Information

• Upper bound for the value of information

• Guarantees for Assortment Optimization

• Numerical Experiments
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Personalized decisions based on customer features

Mo Liu Personalized Incentives for Assortment Optimization 3

Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

For each customer:



Personalized decisions based on customer features

Mo Liu Personalized Incentives for Assortment Optimization 4

Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

For each customer:

Personalized information of customers



Personalized decisions based on customer features
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Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

For each customer:

Preferences between different products,
e.g. utility of each product



Personalized decisions based on customer features
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Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

For each customer:

Assortment problem, product selection…



Personalized decisions based on customer features
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Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

For each customer:

How to build a prediction model?



Personalized decisions based on customer features
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Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

For each customer:

Training set: (feature, preferences)
Preferences: label of the customer



How to obtain the true preferences of customers

• Survey customers:
– Provide a comprehensive survey to customers
– The response from one customer can reveal the true utility vector (with noise)

– “Without costly incentives, most consumers rarely provide this valuable feedback”
---- by Maytal Saar-Tsechansky et al. (2009)
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Incentives in active label acquisition

• Active label acquisition with personalized incentives:
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with type "!

Offer some incentive #! to customer 
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Incentives in active label acquisition

• Active label acquisition with personalized incentives:

• Probability of accepting the survey !(#) depends on our offered incentives
Ø More incentives we offer → Larger probability of taking the survey

• Can we provide same incentives to all customers?
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Customer ! arrives 
with type "!

Offer some incentive #! to customer 
! for completing the survey

Customer ! decides whether to accept 
the survey to get the incentive

Mo Liu



Benefit of personalized incentives
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Provide more incentives to representative customers

Compared to the fixed incentive policy, personalized incentives can:
ü Reduce the size of the training set
ü Reduce the label cost (cumulative incentives)

How to decide personalized incentives?



Personalized decisions based on customer features
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Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

Select customers based on the prediction errors for preferences

Smaller prediction error Higher revenue

Reasons:
If the prediction error is small enough to determine the true optimal decisions,
then a smaller prediction error will lead to the same decision and obtain the
same revenue



Select customers based on the prediction errors for preferences

Personalized decisions based on customer features
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Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

Risk of OM decisions



Personalized decisions based on customer features
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Feature Prediction 
model Preferences Maximize 

the revenue OM decisions

Select customers based on the prediction errors for preferences

Risk of OM decisionsPersonalized Incentives

Risk is a nonlinear of decisionsBehaviors of human
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Regret of prediction

In the predict-then-optimize problems:
• Regret of the prediction:

– Highest possible revenue – the actual revenue of our decisions based on current prediction

q Assortment optimization problem:
Ø Revenue of the best assortment − actual revenue of our assortment
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Regret of the prediction model

• Type of customer: & ∈ {1, … ,,}
• Utility vector: . ∈ ℝ!
• Decision vector: 0 ∈ {0,1}!
• Revenue function: 2 0, 3[.|&]

– 0∗(.): Best decision given the prediction. 0∗ . = argmax# 2 0, .

Regret of prediction =.:
ℓ =., 3[.|&] : = 2 0∗ 3[.|&] , 3[.|&] − 2 0∗ =. , 3[.|&]

• Given a predictor ℎ, the expected regret of the predictor:
Regret ℎ = 3 ℓ ℎ & , 3 . &
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Highest revenue Actual revenue
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Tradeoff during the survey process

Comprehensive cost at time B:

C D$, ℎ$ ≔F
%&'

$
#%G Customer t accept the offer for survey|	#% + J ⋅ Regret ℎ$

Objective: Minimize the expectation of the comprehensive cost
Tradeoff of incentive #%	:
• Too small: Little probability of taking the survey → Lack of data → Regret ℎ$  will be large
• Too large: Waste of label cost （incentive）

Label cost Risk of the prediction model ℎ!
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Market size



• Training set:

: .'

: .(

: .)

: .*

… …

Value of information
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: without .%

Value of information: The amount of risk reduction of
adding a new customer before knowing the true preference



Value of information L &%; N%+'

It quantifies the expected risk reduction of including the customer O in the training set before knowing .%

Value of information
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Expected risk of ℎ" when knowing (#" , %")Risk of predictor ℎ"#$

Mo Liu

New predictor ℎ" when including (#" , %")
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• Value of Information
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Assortment Problem

• Customers have the no-purchase option 0.
• Suppose ., follows Gumbel distribution with variance P
• By MNL choice model, the purchase probability for product Q is:

R-"//
1 + ∑0 R-#//

• Suppose the price of product Q is !, 
• Maximize the revenue of the assortment:

max
'∈)!,*∈ℝ!

∑,∈ - %,&,',
1 + *.'

+. -. '.. = 0,
%, = 2/""/1, ∀4 ∈ [7]

Personalized Incentives for Assortment Optimization 25Mo Liu



Incentives: upper bound for the value of information 

Distance to degeneracy: 
T1 =. ≔ inf#∗ - 2#∗( 4-) =. − .

• It is defined as the distance between the prediction =. and the closest vector . that leads to 
a different decision

Suppose the prediction error for =. is X(&), then an upper bound for the value of information is:

YJ 2min [, \ − [ ] & ⋅ X & ⋅ G T1 =. ≤ X &
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Whether the true optimal 
decision is determined

Prediction error
(Training set distribution)

Mo Liu

Test set distribution



Insights from the upper bound of value of information

Upper bound
YJ 2min [, \ − [ ] & ⋅ X & ⋅ G T1 =. ≤ X &

1. If one feature has a higher probability in the test set
Ø Its value of information gets larger

2. If one feature has a larger proportion in the training set
Ø The prediction error for this feature gets smaller
Ø The value of information gets smaller

3. If the prediction error for one sample is smaller than T1 =. :
Ø The optimal decision for this sample has been determined
Ø Regret for this type of customer is zero
Ø We will stop surveying this type of customers
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Range of offered incentive: #% ∈ 0 ∪ [#6,7, #689]

Given a type of customer &:

If the upper bound of value of information ≤ #6,7:
• Provide zero incentive
• Ignore the feedback of this customer

Otherwise, we offer some incentives between [#6,7, #689]

Personalized incentives based on the upper bound of value of information
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Near-degeneracy function

Near-degeneracy function Ψ :
Ψ # := ℙ '$ ( ) * ≤ #

Ψ	 describes the difficulty in distinguishing the optimal decision from the sub-optimal 
decision at a certain prediction error level #
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Guarantees for the problem
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Theorem:

After B iterations, the cumulative label cost is at most min à ∑%&'$ Ψ(O+
%
&) , à B

%
&

• Low-noise condition: For some large X: > 0 and d > 0, the near-degeneracy function satisfies:

Ψ X ≤ X
X:

;

Low-noise condition is closely related to Hu et al. 2022 and Tsybakov’s noise condition

Under low-noise conditions:
ü The cumulative label cost is at most à B'+;/(



Comparison with supervised learning
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Under the low-noise condition with - > 2:
Ø Personalized incentives policy requires use finite samples to achieve zero risk
Ø Fixed incentive policy requires infinite samples to achieve zero risk

Theorem: 
Under various conditions of 92,3, regarding the comprehensive cost:

ü Our personalized incentive policy ≤ fixed incentive policy
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Numerical Experiments: Assortment optimization with contextual information

Use synthetic data:

• Number of product: 10
• Number of types of customers: 5

• Dimension of features within each type: 8
• Each type has its own feature and prediction model
• Within each type, we assume the true prediction model is linear

• The offered incentive is either 0 or some value between [$20, $40]

• & 9  is a linear function between $20, 0.3  and $40, 0.9
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Results: Assortment optimization
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• Observation: To achieve the same level of risk, the personalized incentive policy 
requires much less label cost

Mo Liu



Results: Assortment optimization
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• When ensuring the excess risk is less than 5000:

Mo Liu

Personalized
incentive

Fixed incentive at
$20

Fixed incentive at
$30

Fixed incentive at
$40

Required label cost 1088 3668 (-70%) 6295 (-79%) 8262 (-87%)

Required number of
surveyed customers
(Size of training set)

30 184 (-84%) 210 (-86%) 206 (-85%)



Thank you
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Range of offered incentive: #% ∈ 0 ∪ [#6,7, #689]
• If the offered incentive is zero, we ignore the feedback of this customer
• If the offered incentive is nonzero, the optimal incentive is #∗

9∗ @ A5; C567 , & ≔ arg min8∈ 8#"$,8#%&
& 95 95 − @ A5; C567

Assumption of !(#): Increasing function with ! #6,7 > 0

Personalized incentive given the value of information
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Active label acquisition using value of information

If the upper bound is less than 9%&', we do not offer any incentive
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One customer 
! with type "!

Training set "', &' , ' = 1,… , + Prediction model for the 
utility of customers

Estimate the (upper bound of) 
value of information for type "!

Offer some incentive #! to 
customer ! for the survey

Obtain the true utility vector 
&! of customer ! at cost #! 

Do not give incentive to 
customer !

Yes

No

Add ("!, &!) into the training set

Update

Whether customer 
! takes the survey
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Results: Assortment optimization
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• Observation: Using the same amount of label cost, the personalized incentive policy 
achieves much smaller risk.

Mo Liu


